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The relationships among species’ physiological capacities and the geogra-

phical variation of ambient climate are of key importance to understanding

the distribution of life on the Earth. Furthermore, predictions of how species

will respond to climate change will profit from the explicit consideration of

their physiological tolerances. The climatic variability hypothesis, which pre-

dicts that climatic tolerances are broader in more variable climates, provides

an analytical framework for studying these relationships between physiology

and biogeography. However, direct empirical support for the hypothesis is

mostly lacking for endotherms, and few studies have tried to integrate physio-

logical data into assessments of species’ climatic vulnerability at the global

scale. Here, we test the climatic variability hypothesis for endotherms, with

a comprehensive dataset on thermal tolerances derived from physiological

experiments, and use these data to assess the vulnerability of species to pro-

jected climate change. We find the expected relationship between thermal

tolerance and ambient climatic variability in birds, but not in mammals—a

contrast possibly resulting from different adaptation strategies to ambient cli-

mate via behaviour, morphology or physiology. We show that currently most

of the species are experiencing ambient temperatures well within their toler-

ance limits and that in the future many species may be able to tolerate

projected temperature increases across significant proportions of their distri-

butions. However, our findings also underline the high vulnerability of

tropical regions to changes in temperature and other threats of anthropogenic

global changes. Our study demonstrates that a better understanding of the

interplay among species’ physiology and the geography of climate change

will advance assessments of species’ vulnerability to climate change.
1. Introduction
Species’ thermal physiology and the variation of climatic conditions in time and

space play central roles in determining species distributions and the spatial vari-

ation of diversity on the Earth [1–5]. Understanding the association among these

factors is crucial for predicting the potential impacts of climate change [6], one of

the major threats to biodiversity [7–9]. To study these associations, a powerful fra-

mework is provided by the climatic variability hypothesis [10], which states that

species occurring in more variable climates should have broader thermal toler-

ances. The framework of the climatic variability hypothesis may also help

predict which species may become threatened by climate change [11]: the hypoth-

eses predict that species currently experiencing a low variation in ambient

temperatures (Ta) should be particularly threatened by rising and more extreme

Ta, as their thermal tolerances should be narrower than that of species living

under highly variable temperature conditions [3,10,12].

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2014.1097&domain=pdf&date_stamp=2014-07-09
mailto:christian.hof@senckenberg.de
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While perhaps generally applicable to ectotherms [1,5], the

climatic variability has only received mixed support for

endotherms (mammals and birds) [6,10,13]. In contrast to

ectotherms, endotherms maintain a high and constant body

temperature, which is thus decoupled to a large degree from

the direct influence of ambient climatic conditions [14]. The

breadth of the thermal tolerance of a given endotherm can

be estimated empirically via its energetic requirements [12].

The amount of energy needed to compensate for the difference

between body temperature and Ta is minimal when Ta is within

the thermoneutral zone (TNZ)—the range of temperatures

within which the metabolism of an endotherm is lowest

and almost independent of Ta. Species with a broad TNZ are

able to maintain their basal metabolism over a wide range of

temperature conditions (electronic supplementary material,

figure S1). Beyond their TNZ, species need to allocate addi-

tional metabolic energy to maintain their body functions [15].

Even though endotherms can cope with short-term thermal

stress, prolonged periods of increased energy expenditure

should ultimately decrease their fitness [16]. TNZ breadth

therefore gives an estimate of the long-term thermal tolerance

of a species.

Species’ responses to anthropogenic changes of the global

climate system are, in simplified terms, usually summarized

as evolutionary adaptation, dispersal and extinction [17–19].

However, whether species may be physiologically buffered

against projected future increases of Ta, i.e. whether species

might be able to tolerate higher temperatures, because these

fall within their TNZ, remains a largely unexplored question.

Recently, it has been suggested that heat tolerance is more

strongly conserved across lineages than cold tolerance [20].

This may imply that heat tolerance imposes a rather hard phys-

iological limit which is not easily changeable by evolutionary

adaption, and it has also been proposed that ectotherm species

in tropical regions may live closer to their heat tolerance limits

[5,20]. In birds, many species appear to lag behind in tracking

their climatic envelopes via shifts of their geographical ranges

[21,22]. This observation possibly suggests that birds may

either be able to adapt rapidly to novel environmental condi-

tions (but see [23]), or that the levels of climate change so far

do not exceed their tolerance limits. However, we still lack

quantitative estimates of endotherms’ physiological potential

to tolerate ongoing and future Ta increases. Furthermore, an

improved understanding of how the relationship between ther-

mal tolerances and Ta varies geographically will also help

quantifying species’ vulnerability to climate change.

Here, we compiled, to our knowledge the largest set of

endotherm TNZ data to date in order to: (i) investigate the vari-

ation in species’ thermal tolerances across the globe and thus to

provide the most comprehensive test of the climatic variability

hypothesis for endotherms, and to (ii) assess the potential vul-

nerability of endotherms to climate change, based on their

thermal tolerances. We compiled data on experimental

measurements of TNZ for 255 bird and 297 mammal species

from the literature (see the electronic supplementary material,

table S1), along with geographical information as well as

data on ambient climatic variability [24]. We tested the climatic

variability hypothesis by analysing the relationships between

TNZ breadth and climatic variability while accounting for

species’ evolutionary history, i.e. their phylogenetic relation-

ships. To assess species’ vulnerability to climate change, we

quantified the concordance between the upper TNZ limit

and maximum Ta for current as well as for future conditions.
2. Methods
(a) Data
As thermal tolerance data, we compiled information on TNZ for

255 bird and 297 mammal species from the literature (see the elec-

tronic supplementary material, table S1). We used studies that

measured species’ metabolism in relation to ambient temperature

under laboratory conditions (electronic supplementary material,

figure S1; [25]), and that provided data on both upper and lower

TNZ limits as well as body mass. To enhance comparability with

mammals, 94 migratory bird species were excluded from the ana-

lyses as they experience varying climatic environments throughout

the year and may have developed different physiological adap-

tations than all-year-resident birds. For studies in which upper

and lower TNZ limits were not calculated, but a graph of suitable

data was given, we extracted the values from plots using DATATHIEF

III [26]. We classified species into two categories: wild and

acclimatized. Species were classified as acclimatized when kept in

captivity for more than one month. While the validity of labora-

tory measurements of TNZ breadth as estimates of fundamental

temperature niches has been debated [27], TNZ breadth is an

approximation of thermal tolerance based directly on physiological

measurements. Therefore, it is an improvement over inferring

species’ climatic preferences from their geographical distributions

[20]. We acknowledge that TNZ may vary within the same species,

either seasonally [28], or among different populations across its

geographical distribution [15]. However, interspecific variation in

TNZ breadth in our dataset ranges from 18C to 408C, and is there-

fore likely to exceed any intraspecific variation which might

potentially confound our analyses.

The final dataset contained 161 resident bird species (from

17 orders and 50 families) and 297 mammal species (from 24

orders and 75 families; see the electronic supplementary material,

table S1). Thus, even though some orders or families might be

over- or under-represented, we assume that the data cover a repre-

sentative selection of the physiological diversity within the avian

and mammalian trees of life. Furthermore, the data represent the

majority of the world’s biomes. From each study that provided

physiological data, we extracted information on the geographical

coordinates of the capture site of the individuals used in the

experiments. Latitude and longitude coordinates of the sites were

mentioned in most of the studies; if coordinates were not given,

we retrieved them using ACME MAPPER 2.0 (http://mapper.acme.

com). We also compiled distribution data for all species from

public databases provided by BirdLife International for birds and

by the International Union for Conservation of Nature for mammals

[29,30]. Phylogenetic information for all species were compiled from

published supertrees for birds [31] and mammals [32,33].

Climatic data were derived from the CliMond dataset for

current conditions and future climate change scenarios [24]. Cli-

matic data for current conditions were averaged across 30 years

from 1961 to 1990, centred on 1975. For the projections of future cli-

mate, we used two different global climate models (or general

circulation models; GCMs—CSIRO-MK 3.0 and MIROC-H) for

2080, and two different greenhouse gas emission scenarios—the

A1B (balanced) scenario and the A2 (extreme) scenario (see [24]

for information on the choice of GCMs; for more details on the

scenario outlines, see [34,35]). All climatic data were resampled

to a global 50 � 50 km grid using weighted averaging. For trans-

ferring species distribution polygons to gridded distribution

data, we defined species presence within grid cells if any part of

the distribution overlapped with the respective cell.
(b) Climatic variability hypothesis
To test the climatic variability hypothesis, we assessed the relation-

ship between TNZ breadth in birds and mammals and climatic

variables representing the variability of climatic conditions

http://mapper.acme.com
http://mapper.acme.com
http://mapper.acme.com
http://rspb.royalsocietypublishing.org/
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(temperature, precipitation and radiation) within a year (variables

‘Bio04’, ‘Bio15’ and ‘Bio23’ in [24]). These variables are calculated

as the coefficient of variation of monthly mean temperature,

monthly sum of precipitation and monthly solar irradiance

across 12 months. As an additional measure for temperature varia-

bility, we used the annual temperature range (‘Bio07’), calculated

as the difference of the hottest temperature of the warmest

month and the coldest temperature of the coldest month [24,36].

TNZ breadth and all climatic variables were log-transformed to

linearize the relationships among variables.

To estimate the association between TNZ breadth and climatic

variability while accounting for the non-independence of species

owing to their joint evolutionary history, we used phylogenetic gen-

eralized least-squares (PGLS) regression using the package caper
[37] in R [38]. This approach allows flexibility in the underlying

evolutionary assumptions via the use of a parameter l (Pagel’s

lambda [39]) that reflects the amount of phylogenetic constraint

on the phenotype [40,41]. We modelled log-transformed TNZ

breadth using PGLS as a function of log-transformed body mass

and acclimatization while we estimate l, and set it to its maxi-

mum-likelihood value. After controlling for phylogeny, body

mass and acclimatization, we individually added absolute latitude,

temperature seasonality, temperature annual range, precipita-

tion seasonality or radiation seasonality (all climatic variables

log-transformed) to the model (table 1; also see the electronic sup-

plementary material, table S2). For both birds and mammals, we

randomly sampled 100 trees from the pseudo-posterior distribution

of the used supertrees [31,32] and ran the PGLS analyses for these

100 trees. For the mammal trees, polytomies were resolved using

a birth–death model of diversification [33].

As the spatial structure in geographical data may affect the

analyses and their interpretation, we tested for spatial autocorre-

lation in the residuals of the regression models using Moran’s I
[42]. With the exception of a single model (mammals, radiation

seasonality), we did not find any evidence for spatial autocorre-

lation. Accounting for spatial autocorrelation using generalized

least-squares as implemented in the software spatial analysis

in macroecology (SAM, version 4.0 [43]) did not significantly

influence the results for any of the regression models (birds, all

p-values . 0.11; mammals, all p-values . 0.06); therefore, we

present the original models.
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(c) Vulnerability to climate change
To assess species’ potential vulnerability to climate change, we

quantified the concordance between upper TNZ limit (upper criti-

cal temperature, UCT) and maximum ambient temperature (Ta) for

current as well as for future conditions under different climate

change scenarios. As an estimate of maximum Ta, we used the

monthly average of daily maximum temperatures of the warmest

month. When maximum Ta exceeded UCT, we recorded a ‘thermal

mismatch’, whereas ‘thermal safety’ was recorded when maximum

Ta was below UCT [44]. Thus, thermal safety represents a buffer

zone in degrees Celsius, with higher safety values representing a

larger buffer to current and projected future temperatures. Thermal

mismatch is an estimate for the potential degree of vulnerability in

degrees Celsius that a species experiences under current or projected

future temperatures, with higher mismatch values representing

higher degrees of vulnerability. While we are aware that the lower

TNZ limit (lower critical temperature, LCT) is also an influential

metabolic parameter, we do set our focus on UCT, because rising

temperatures as projected in climate change scenarios should have

a larger impact on the relationship between UCT and Ta. This is

underlined by the heat dissipation limit theory [45] which suggests

that metabolic heat generated in order to compensate for higher Ta

could be particularly detrimental for endotherm species.

We calculated three different measures for thermal safety

and mismatch. First, we calculated the difference between Ta

http://rspb.royalsocietypublishing.org/
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and UCT at the sites of animal capture (see above). Second, to

account for the geographical variation in climatic conditions

across species distributions, we calculated thermal mismatch as

the proportion of grid cells across the species’ current distri-

bution where it experiences a mismatch between Ta and UCT

at any time of the year under current and projected future con-

ditions. Third, to account for both the spatial and temporal

variation in climatic conditions that a species experiences

across its geographical range, we calculated a ‘temperature mis-

match index’. To do so, we first calculated for each grid cell of the

species’ current distribution the number of months in which the

species experiences a mismatch under current or projected future

conditions. Then, we summed the mismatching months across all

grid cells within the distribution and divided them by the total

number of grid cells of the distribution, multiplied by 12; this

value was then multiplied by 100:

temperature mismatch index ¼ 100�
Pn

i¼1 MMi

n� 12
,

where MMi is the number of mismatching months in grid cell

i, and n represents the total number of grid cells of the distribu-

tional range. A value of 100 indicates that a species experiences a

mismatch in each month and in all grid cells across its distri-

bution, whereas a value of 0 indicates that the species does not

experience a mismatch anytime and anywhere across its distri-

bution. To account for the variability in climate change

projections for future time periods [46], we used combinations

of two different GCMs (MIROC-H and CSIRO-MK 3.0 [34])

and greenhouse gas emission scenarios (A1B and A2 [35]).
3. Results
We found contrasting patterns in the global variation of ther-

mal tolerances for birds and mammals (figure 1; electronic

supplementary material, figure S2). For birds, TNZ breadth

increased with increasing latitude of species occurrences,

whereas we found no relationship between TNZ breadth

and latitude for mammals (table 1). For birds, TNZ breadths

increased with temperature and radiation variability and

decreased with precipitation variability, whereas mammals

did not show any significant relationship between TNZ

breadth and climatic variability (table 1). The differences

between birds and mammals were largely consistent across

regions (electronic supplementary material, figure S3) and
also robust to varying the spatial extent of the study (elec-

tronic supplementary material, table S2). The results were

also robust to including or excluding the largest bird or

mammal orders (Passeriformes, Rodentia, Chiroptera; results

not shown). All effects were significantly different between

birds and mammals (Wald test, all p , 0.05) except for

annual temperature range, which did not significantly affect

TNZ breadth for either group (table 1). Overall, mammals

had smaller TNZ breadths than birds (t ¼ 9.11, p , 0.0001).

TNZ breadths were strongly influenced by the lower TNZ

limits (LCT) in birds (rPearson ¼ 20.83, p , 0.001, n ¼ 161) and

mammals (rPearson¼ 20.83, p , 0.001, n ¼ 297), i.e. species

with lower LCT had larger TNZ breadths. LCT was positively

related to annual minimum temperature at the site of animal cap-

ture for both birds and mammals, but after restricting the

datasets to a latitudinal band between 608S and 608N (an area

where data availability is evenly distributed, see also

the electronic supplementary material, table S2), this relationship

was positive only for birds (rPearson ¼ 0.17, p ¼ 0.038, n ¼ 157)

and not for mammals (rPearson ¼ 0.03, p ¼ 0.592, n ¼ 294).

Our comparison of upper TNZ limits (UCT) and maximum

Ta at the sites where the animals were captured for the physio-

logical experiments revealed that 15% of bird and 16%

of mammal species are currently experiencing maximum Ta-

levels above UCT (‘mismatch’; figure 2a,b). Under projected

climate change, these mismatches increased to proportions

of 36% (birds) and 47% (mammals) for the year 2080

(MIROC-H GCM, A2 emission scenario; figure 2c,d; for other

GCM � scenario combinations, see electronic supplementary

material, figure S4).

When we accounted for the geographical variation in

climatic conditions across species distributions, we found

that 63% of the bird and 76% of the mammal species curren-

tly experience thermal mismatch in at least one grid cell

across their distribution (electronic supplementary material,

figure S5). Under projected future conditions, these pro-

portions are projected to increase to 83% for birds and 96%

for mammals. Thermal mismatches across more than 50% of

their current distribution are projected for about 54% of the

bird and 62% of the mammal species. These values are largely

consistent independent of different measures used for

maximum Ta (electronic supplementary material, figure S5).
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When additionally considering the intra-annual temporal

variation of Ta across species distributions, we found that

most species in both birds and mammals experience thermal

mismatches across relatively small proportions of their

current range and also for only relatively short time periods

per year (figure 3). The mismatch index, which takes into

account both spatial and temporal variation in thermal

mismatch, ranged between 0 and 20 for 89% of the bird

and 85% of the mammal species under current condi-

tions (figure 3a,b). Under projected future conditions, these

values decrease to 55% of the bird and 49% of the mammal

species, whereas the mismatch index exceeds a level of

50 for 16% of the bird and 20% of the mammal species

(figure 3c,d). These results showed very little variation

among the different GCM and scenario combinations

(electronic supplementary material, figure S6).

Degrees of mismatch increased from polar and temperate

towards tropical regions for both birds and mammals (elec-

tronic supplementary material, table S3), largely independent

of whether considering current Ta at the sites of animal capture

(figure 2) or future Ta across species geographical ranges

(figure 3 and the electronic supplementary material, figure S6).
4. Discussion
While our results support the climatic variability hypothesis for

birds, they contradict studies suggesting that it also applies to
mammals [12,13,47]. The relationship between thermal toler-

ance breadth and climatic variability was stronger for birds

than for mammals, independently of the variability measure

used. This indicates that, on the one hand, distributions of

birds may be more strongly governed by their thermal toler-

ances (i.e. their TNZ) than mammalian distributions. On the

other hand, thermal tolerances of birds may be more closely

adapted to the ambient temperatures experienced than those

of mammals. Although with our data and analyses we cannot

identify the relative importance of these two mechanisms or

their potential interactions, we believe that our findings provide

support for the assumption that birds’ thermal physiology is

more directly linked to their ambient climatic conditions than

that of mammals (see also [48, p. 134]). This is also underlined

by our finding that LCTs are more closely related to annual

temperature minima in birds than in mammals, suggesting

that the discrepancy between ambient temperature variability

and thermal tolerance in mammals is mainly driven by the

decoupling of their cold tolerances from low ambient tempera-

tures [12]. These differences may be due to differing behaviours

and lifestyles. To avoid extreme climatic conditions, many

mammals are able to create their preferred microclimates such

as burrows and dens [49], whereas only few birds use such

strategies to avoid climatic extremes [48]. In other words, mam-

mals may have developed behavioural strategies to cope with

challenging thermal conditions, whereas in birds, physiological

adaptations appear to predominate their strategies to cope with

extreme temperatures.
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We found that most of the endotherm species in our dataset

are currently experiencing maximum ambient temperatures

within their tolerance limits for most months within a year.

Under future climate change projections, our analyses suggest

that the majority of endotherm species will probably find suit-

able temperature conditions within their current geographical

ranges. These results may provide one line of explanation for

the suggestion that despite their comparatively strong disper-

sal capacities, many bird species appear to lag behind in

tracking their climatic envelopes via shifts of their geographical

ranges [21,22].

Overall, we show that the potential vulnerability to higher

future ambient temperature increases from polar towards tropi-

cal regions, even though increases of temperature projected for

temperate and polar regions exceed those in the tropics. Species

in tropical regions tend to live closer to their upper temperature

limits and even small increases in ambient temperatures may

challenge their long-term survival [44,50,51].

It is important to note that our analyses represent a purely

physiological perspective on species’ potential vulnerability

to rising ambient temperatures. Nevertheless, we assume

that our results are conservative estimates of species’ vulner-

ability to increasing temperatures for four reasons. First, to

assess vulnerability to climate change we used species’

UCT, i.e. the upper limit of the TNZ, instead of the lethal

heat tolerance limit [52]. As lethal tolerance limits well

exceed UCT of most species, using lethal temperatures would

have further increased the thermal safety margins of most

species. Second, various metabolic, behavioural or even evol-

utionary pathways enable endotherms to avoid extremely hot

temperatures. Third, our coarse temporal and spatial averaging

of climatic data largely ignores the microclimatic variation in

heterogeneous habitats where small areas of suitable climates

may allow species to endure adverse conditions [18,53].

Such opportunities further support our conclusions that
temperature increases alone may not impose a severe threat on

many endotherms. Finally, while, in our study, we have not

explicitly considered additional species’ responses to climate

change such as dispersal or evolutionary adaptation—

processes which may only further increase species’ potential

to cope with changing climatic conditions [18].

However, while relatively high UCT levels may buffer many

species against rising mean temperatures, recent studies on

ectotherms [54,55] suggest that the potential increase of temp-

erature variation in the future may still negatively affect

species, especially because of the sharp decline in fitness at the

warm thermal limit. Additionally, rising temperatures might

have indirect effects via biotic interactions [56]: for instance,

temperature increase may improve ambient climatic conditions

for competing species [57] or pathogens [58], or have negative

impacts on the occurrence of food resources or mutualists [59].

In terms of geographical and taxonomic coverage, our

study is, to the best of our knowledge, the most comprehensive

to date that investigates the global variation in experimentally

derived thermal tolerances of endotherms in a spatially explicit

context. With regard to endotherms’ potential vulnerability

to climate change, three conclusions arise, relating to: (i) the

differences in thermal tolerance patterns between birds and

mammals, (ii) the spatial variation in vulnerability to climate

change, and (iii) the consequences for studies aiming to predict

climate change impacts on species distributions.

First, owing to their generally narrower thermal toler-

ances and their seemingly higher levels of projected

mismatch with ambient temperatures in comparison with

birds, the challenges from climate change may appear more

severe for mammals than for birds. However, the high inde-

pendence of their thermal physiology from their ambient

climatic conditions suggests that projections of mammal

responses to climate change [60] may contain a substantial

component of uncertainty.
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Second, the mismatch between physiological thermal

limits and ambient climatic conditions is highest in tropical

regions, which also harbour the highest amount of biodiver-

sity worldwide. Projections of decreasing precipitation in

areas where rising temperature alone may already jeopardize

bird and mammal populations [61] worsen the perspective

for tropical species, as water availability is crucial for

endotherms to compensate thermal stress (electronic sup-

plementary material, figure S1b) [62]. Assuming that our

dataset is representative for a wide selection of endotherms

in general, this coincidence of high sensitivity to even small

levels of temperature increase with potential precipitation

decrease, high levels of species richness and endemism, and

especially the unhalted loss of natural habitats, underlines

the threats from global change for biodiversity in tropical

regions [7,51,63].

Third, we show that the majority of bird and mammal

species in our dataset are likely to experience increases of

temperature that fall within their thermal tolerance limits

across more than 50% of their geographical ranges and for

the majority of months per year. Thus, from a macrophysio-

logical point of view, many endotherms might not be

stressed by rising temperatures [21]. These findings call for

a careful reinterpretation of predictions of extinction risk

that are based solely on statistical models correlating species

occurrences with climatic variables and that do not take into

account that physiological tolerances may buffer projected

changes in ambient climatic conditions. However, our results
suggest considerable variation of potential vulnerability

among regions and between major taxonomic groups (birds

and mammals). Furthermore, additive or synergistic effects

of climate change with other threats, such as land-use

change, the spread of invasive species or overexploitation

[18,63,64], may counteract the potential opportunities given

by species’ physiological tolerances.

Our analyses are a step forward towards a better quanti-

fication of species’ chances and challenges to cope with

climate change, by explicitly considering their fundamental

physiological capacities. With our study, we demonstrate

how a joint analytical framework combining species’ thermal

physiology, their ecology and the geography of climate

change may help to improve understanding and predicting

the potential futures of species and biodiversity in an age

of global change.
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